

Station d'épuration de SEA SMAGY

SOMMAIRE

1	SYNT	HESE ANNUELLE DU REGISTRE	3
	1.1	CHIFFRES CLES	3
	1.2	IDENTIFICATION DES INTERVENANTS	4
2	RAPE	PELS REGLEMENTAIRES	5
3	CARA	ACTERISATION DES BOUES	6
	3.1	MODALITES DE SURVEILLANCE	6
	3.2	ANALYSES REALISEES	7
	3.2.1	Paramètres Agronomiques	7
	3.2.2	Eléments traces métalliques et composes traces organiques	8
	3.2.3	Autres éléments	9
	3.3	BILAN QUANTITATIF	10
4	CARA	ACTERISATION DES SOLS	.11
	4.1	PARAMETRES AGRONOMIQUES	11
	4.2	ELEMENTS TRACES METALLIQUES	11
	4.3	RELIQUATS AZOTES OU PESEES COLZA	11
5	BILA	N DES EPANDAGES	.12
	5.1	MODALITES D'EPANDAGE	12
	5.2	PERIODES D'EPANDAGE	12
	5.3	REGISTRE D'EPANDAGE	14
6	BILA	N AGRONOMIQUE	.15
	6.1	COEFFICIENTS DE DISPONIBILITES DES ELEMENTS FERTILISANTS	15
	6.2	BILAN DES LIVRAISONS	15
	6.3	BILAN DE FERTILISATION	15
	6.4	BILAN DE FUMURES SUR LES PARCELLES DE REFERENCE	16
	6.4.1	parametres du bilan azoté	16
	6.4.2	Bilans de fumure detailles	17
7	SUIV	DES FLUX	.18
	7.1	FLUX EN MATIERES SECHES	18
	7.2	FLUX EN ELEMENTS TRACES METALLIQUES	18
	7.3	FLUX EN COMPOSES TRACES ORGANIQUES	18
8	POIN	T SUR LA FILIERE	.19
	8.1	CAPACITE DE STOCKAGE	
	8.2	ETAT DES LIEUX DU PLAN D'ÉPANDAGE	19
9	CON	CLUSION	.20

1 SYNTHESE ANNUELLE DU REGISTRE

1.1 CHIFFRES CLES

NOM DE LA STATION :	SEA SMAGY
Département :	LOIRET
Capacité nominale :	2 450 E.H.
Filière de traitement :	Prétraitements, Boues activées en aération prolongée, traitement des boues par séchage solaire extensif => Procédé SAHARA® pour Séchage Autonome Hélio Activé Rapide
Type de boues :	Boue d'épuration séchée naturellement
Quantité de boues brutes épandues :	15,10 t
Siccité moyenne des boues épandues :	76,70 %
Quantité de matière sèche épandue avec chaux :	11,58 t de MS
Quantité de matière sèche épandue hors chaux :	11,58 t de MS hors chaux
Surface totale des épandages :	3,60 ha
Nombre d'agriculteurs concernés :	1 exploitation agricole
Dose moyenne :	4,19 t / ha
Dose moyenne (Matière Sèche avec chaux) :	3,22 t MS / ha
Dose moyenne (Matière Sèche hors chaux) :	3,22 t MS / ha
Périodes d'épandage :	le 21/07/2020

1.2 IDENTIFICATION DES INTERVENANTS

Maître d'ouvrage :	SEA SMAGY							
Exploitant de la station :	SEA SMAGY							
Prestataires :								
de transport :	MICHAUT JEAN YVES - 45600 SULLY SUR LOIRE							
d'épandage :	MICHAUT JEAN YVES - 45600 SULLY SUR LOIRE							
de suivi agronomique :	SAUR - 45110 CHATEAUNEUF SUR LOIRE							
Prestataire chargé des prélèvements :								
de boues :	SAUR - 45110 CHATEAUNEUF SUR LOIRE							
de sols :	SAUR - 45110 CHATEAUNEUF SUR LOIRE							
Prestataires chargés des analyses :								
de sols :	AUREA							
de boues :	AUREA							
Registre d'épandage :								
tenu par :	SAUR							
archivé à :	la station d'épuration							
Receveurs des boues :	Agriculteurs							

2 RAPPELS RÈGLEMENTAIRES

Règle	ementation applicable aux épandages de boues urbaines
Réglementation nationale relative aux systèmes d'assainissement	Arrêté du 21/07/2015 relatif aux systèmes d'assainissement collectif et aux installations d'assainissement non collectif, à l'exception des installations d'assainissement non collectif recevant une charge brute de pollution organique inférieure ou égale à 1,2kg/j de DBO5.
Règlementation nationale relative aux épandages de boues	La valorisation agricole des boues urbaines est règlementée par les articles R211-25 à R211-47 du Code de l'Environnement et par l'arrêté ministériel du 8 janvier 1998.
Délimitation des zones vulnérables aux nitrates d'origine agricole	La zone vulnérable du bassin Loire-Bretagne est définie par les arrêtés préfectoraux n°17-014 et 17-018 du 2 Février 2017.
Programme d'actions national	Arrêté du 19 Décembre 2011 modifié par les arrêtés du 23 Octobre 2013 et 11 Octobre 2016 relatif au programme d'action national à mettre en œuvre dans les zones vulnérables afin de réduire la pollution des eaux par les nitrates d'origine agricole.
Programme d'actions régional	Arrêté du 28/05/2014 modifié par l'arrêté du 23 Juillet 2018 établissant le programme d'actions régional en vue de la protection des eaux contre la pollution par les nitrates d'origine agricole. Arrêté préfectoral annuel établissant le référentiel régional de mise en œuvre de l'équilibre de la fertilisation azotée pour la région Centre-Val de Loire.

Le parcellaire épandu dans l'année est situé en zone vulnérable.

3 CARACTERISATION DES BOUES

3.1 Modalites de surveillance

L'arrêté du 30 avril 2020 précisant les modalités d'épandage des boues issues du traitement des eaux usées urbaines pendant la période Covid-19 autorise :

- L'épandage des boues extraites avant le début d'exposition à risque pour le covid-19.
- L'épandage des boues extraites <u>après</u> le début de la période d'exposition à risques pour le Covid-19 répondant aux critères d'hygiénisation prévus par l'article 16 de l'arrêté du 8 janvier 1998 et avec les éléments de surveillance renforcée, à savoir :
 - La caractérisation initiale démontrant que le traitement est hygiénisant et identifiant la valeur de référence des coliformes thermotolérants :
 - Salmonella 8 NPP/10 g MS
 - Entérovirus 3 NPPUC/10 g MS
 - Œufs d'helminthes pathogènes viables 3/10 g MS
 - Coliformes thermotolérants (valeur de référence)
 - Les éléments de surveillance complémentaire consistant en <u>l'une ou plusieurs</u> des mesures suivantes :
 - Le doublement de la fréquence des analyses microbiologiques prévus à l'article 16 de l'arrêté du 8 janvier 1998 et notamment celle de la surveillance des coliformes thermotolérants. Soit une analyse de coliformes thermotolérants chaque semaine pendant la période d'épandage.
 - Pour le chaulage : l'enregistrement journalier du pH, le temps de contact entre la chaux et les boues pour assurer l'hygiénisation de la boue étant de l'ordre de 10 jours à pH 12.
 - Pour le séchage thermique et digestion anaérobie thermophile: l'enregistrement du suivi des températures à comparer aux couples températures-temps des règles d'hygiénisation fixées actuellement pour les composts (55°C pendant 14 jours / 60°C pendant 7 jours / 65 °C pendant 3 jours / 70 °C pendant une heure selon les recommandations du Haut conseil de la santé publique dans son avis du 19 mars 2020).

La date à prendre en compte pour le début d'exposition à risques pour le covid-19 est définie, pour chaque département, en annexe de l'arrêté du 30 avril 2020.

Dans le Loiret. la date est fixée au 20 mars 2020.

Les boues épandues cette année concernent les boues extraites <u>avant</u> le début de la période d'exposition à risques pour le Covid-19, c'est-à-dire avant le 20/03/20.

Les boues produites après cette date sont donc restées en stock sur la plateforme et sont en attente d'une solution en fonction des décisions prises par le ministère.

Les boues séchées du SEA SMAGY ne sont pas hygiénisées; le séchage solaire avec le procédé SAHARA® n'est pas considérée comme hygiénisant.

3.2 ANALYSES REALISEES

Type d'analyse	Arrêté du 08/01/98	Réalisé 2020			
Valeur agronomique	2	4			
Eléments Traces Métalliques	2	2			
Composés Traces Organiques	2	2			
Matière Sèche	-	0			
Coliformes thermotolérants	-	0			

Type de suivi analytique : Renforcé sur les valeurs agronomiques

Le programme d'analyses réalisé répond au programme de suivi réglementaire, sur la base de 11,58 TMS hors chaux évacuées en 2020.

Les résultats portant sur les paramètres ETM et CTO étaient connus avant la réalisation des épandages.

En 2020, l'écart mesuré entre la teneur maximale et la teneur minimale pour certains paramètres de valeur agronomique (C/N, Ntot et NH4) a dépassé 30 %. Un suivi renforcé (suivi de routine) doit être mis en place en 2021 sur ces paramètres, soit 4 analyses.

3.2.1 PARAMETRES AGRONOMIQUES

Siccité (1)	Teneur moyenne en matière sèche de 82,55 %							
рН	6,63 ; pH proche du neutre et stable,							
C/N	5,74 ; Rapport C/N qualifié de faible et correspondant à un fertilisant organique de classe II apparenté à des lisiers							
Matière organique	54,13 % MB ; teneur en matière organique moyenne, valeur courante pour ce type de boue							
Azote	4,83 % MB; teneur en azote moyenne, valeur courante pour ce type de boues. Le coefficient de disponibilité de l'azote la première année suivant l'épandage est estimé à 45 % avant colza, 25 % avant céréales d'automne et 50 % avant cultures de printemps (source CA des pays de la Loire)							
Phosphore	6,84 % MB ; teneur en phosphore moyenne. Le coefficient de disponibilité la première année suivant l'épandage est estimé à 70 %.							
Potassium	0,54 % MB ; teneur en potassium faible. Valeur courante pour les boues d'épuration							
Magnésium	0,46 % MB ; teneur en magnésium faible. Valeur courante pour les boues d'épuration							
Calcium	1,88 % MB ; teneur en calcium faible du fait que les boues ne sont pas chaulées							

⁽¹⁾ Lors de chaque évacuation de boues, une mesure de siccité est réalisée sur un échantillon moyen de boues au moment de l'épandage. Ces mesures sont représentatives et sont celles retenues pour les calculs de matières sèches évacuées et les apports en fertilisants apportés sur les parcelles.

Date	Mat sèches (% MS)	рН	C/N	Mat Orga (% MS)	C Orga (% MS)	NTK (% MS)	N-NH4 (% MS)	P2O5 (% MS)	K20 (% MS)	MgO (% MS)	CaO (% MS)	Na20 (% MS)	Commentaires
28/05/2020	90,50	6,10	5,42	71,40	35,70	5,96	0,03	7,53	0,70	0,54	2,18	0,07	
28/05/2020	86,30	7,00	5,84	63,30	31,60	4,67	0,08	9,15	0,66	0,58	2,27	0,11	
21/07/2020	75,10	6,60	7,00	62,30	31,20	4,43	0,23	8,43	0,59	0,55	2,30	0,13	
21/07/2020	78,30	6,80	4,70	64,50	32,30	6,82	0,12	8,06	0,64	0,55	2,36	0,10	
Moyennes	82,55	6,63	5,74	65,38	32,7	4,83	0,12	8,29	0,65	0,56	2,28	0,1	
Minimums	75,1	6,1	4,7	62,3	31,2	4,43	0,03	7,53	0,59	0,54	2,18	0,07	
Maximums	90,5	7	5,8	71,4	35,7	6,82	0,23	9,15	0,7	0,58	2,36	0,13	

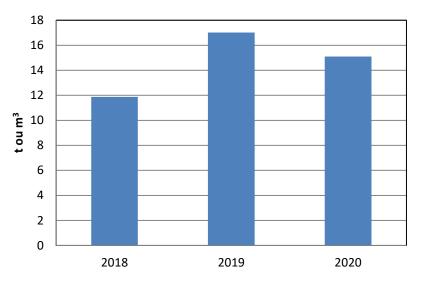
3.2.2 ELEMENTS TRACES METALLIQUES ET COMPOSES TRACES ORGANIQUES

Date	Cd (mg/kg MS)	Cr (mg/kg MS)	Cu (mg/kg MS)	Hg (mg/kg MS)	Ni (mg/kg MS)	Pb (mg/kg MS)	Zn (mg/kg MS)	Se (mg/kg MS)	Cr+Cu+Ni+Zn (mg/kg MS)	Commentaires
28/05/2020	0,73	20,60	127,00	0,24	25,60	19,30	627,00		800,20	
28/05/2020	0,74	25,90	144,00	0,36	25,30	24,50	741,00	1,90	936,20	
Moyennes	0,74	23,25	135,5	0,3	25,45	21,9	684	1,9	868,2	
Minimums	0,73	20,6	127	0,24	25,3	19,3	627	1,9	800,2	
Maximums	0,74	25,9	144	0,36	25,6	24,5	741	1,9	936,2	
Valeurs limites	10	1 000	1 000	10	200	800	3 000	-	4 000	

Date	Somme 7 PCB (mg/kg MS)	Fluoranthène (mg/kg MS)	Benzo(b)Fluor. (mg/kg MS)	Benzo(a)Pyr. (mg/kg MS)	Commentaires
28/05/2020	0,056	0,06	0,04	0,04	
28/05/2020	0,056	0,12	0,06	0,04	
Moyennes	0,056	0,09	0,05	0,04	
Minimums	0,056	0,06	0,04	0,04	
Maximums	0,056	0,12	0,06	0,04	
Valeurs limites Cas général	0,8	5	2,5	2	
Valeurs limites Epandages sur pâturage	0,8	4	2,5	1,5	

Les analyses de boues sont conformes aux seuils limites définis dans l'arrêté du 8 janvier 1998.

3.2.3 <u>AUTRES ELEMENTS</u>


Date	Bore (mg/kg MS)	Arsenic (mg/kg MS)	Cobalt (mg/kg MS)	Fer (mg/kg MS)	Manganèse (mg/kg MS)	Molybdène (mg/kg MS)
28/05/2020	28,10		4,20	64100,00	108,00	3,70
28/05/2020	32,70		8,00	123000,00	122,00	5,20
21/07/2020	34,10			113000,00	136,00	
21/07/2020	30,00			97400,00	126,00	
Moyennes	31,23		6,1	99375	123	4,45
Minimums	28,1	0	4,2	64100	108	3,7
Maximums	34,1	0	8	123000	136	5,2

3.3 BILAN QUANTITATIF

Le graphique ci-dessous montre l'évolution sur les trois dernières années des volumes épandus (en unité de produit brut).

Quantités épandues sur les trois dernières années

L'intégralité des boues « non covid » a été valorisée en agriculture.

Compte tenu de la date de l'épidémie au 20 mars 2020 pour le Loiret, seul le tonnage produit avant cette date a pu être épandue en agriculture (80% des boues) ; le volume restant est encore en stock sur la plateforme en attente d'une solution alternative.

En attendant que le ministère donne une date de fin d'épidémie ou délivre un arrêté modificatif, les boues produites actuellement sont toujours considérées comme des boues « covid » et sont donc non épandable.

4 CARACTÉRISATION DES SOLS

1 prélèvements de sols a été réalisé dans l'année, dont :

- 1 analyse sur les paramètres agronomiques
- 0 analyses sur les paramètres agronomiques et éléments traces métalliques
- 0 reliquats azotés

4.1 PARAMETRES AGRONOMIQUES

La réglementation interdit l'épandage des boues lorsque le pH est inférieur à 5 et impose un chaulage des boues lorsque le pH est compris entre 5 et 6 (à défaut un pré-chaulage des parcelles est toléré).

À la vue du pH de la parcelle aucun pré-chaulage n'a été effectué.

4.2 ELEMENTS TRACES METALLIQUES

L'arrêté du 8 janvier 1998 impose que soient réalisées des analyses de sol portant sur le pH et les éléments traces métalliques, sur les parcelles de l'étude préalable :

- lors de l'ajout de parcelles,
- après l'ultime épandage (retrait de la parcelle du plan d'épandage),
- au minimum tous les 10 ans.

Pas d'analyse ETM

4.3 Reliquats Azotes ou pesees colza

Conformément à la réglementation en vigueur (arrêté du 28/05/2014 établissant le programme d'actions à mettre en œuvre dans les zones vulnérables de la région Centre), des reliquats azotés ont été réalisés, dans le cadre de la campagne d'épandage été-automne 2020.

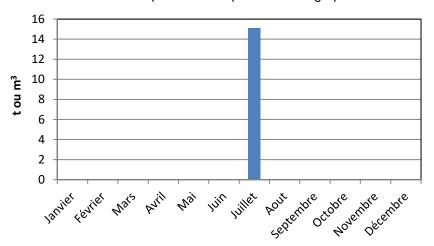
Dans le cas d'épandage avant implantation d'un colza avant hiver, le reliquat est remplacé par une pesée de biomasse.

Ces analyses permettent de faire le point sur l'azote disponible en sortie d'hiver et d'ajuster au mieux l'apport complémentaire en fertilisant azoté minéral en dose fractionnée.

Etant sur des prairies, aucun reliquat azoté ne sera réalisé cette année.

5 BILAN DES ÉPANDAGES

5.1 MODALITES D'EPANDAGE


Les boues de la station de SEA SMAGY sont des boues sèches.

Les boues ont été épandues avec un épandeur à fumier par l'entreprise MICHAUT JEAN YVES - 45600 SULLY-SUR-LOIRE.

5.2 Periodes d'epandage

En zone vulnérable les périodes d'épandage autorisées dans le LOIRET pour les fertilisants de type II sont celles page suivante.

L'épandage des boues a été réalisé aux périodes indiquées dans le graphe ci-dessous :

Répartition mensuelle des quantités de boues épandues en 2020

Les périodes d'épandage des boues ont donc été respectées.

		Juil	Août	Sept	Oct	N	ov	Déc	Janv	Fév	r	Mars	Avr	M	lai	Juin
Sols non cultivés	Type I et II							Toute l'a	ınnée							
Colza implanté en fin d'été ou à	Type I					15/11 au 15/01										
l'automne	Type II	(3)			15/10 au 31/01											
Autres cultures implantées en été ou à	Type I					15/11 au 15/01										
l'automne	Type II		(4)			01/10 au 31/01										
Cultures implantées au printemps, et	Type I				(5)											
précédées de CIPAN ou de CD (1)	Type II	(6)														
Cultures implantées au printemps, et	Type I															
non précédées de CIPAN ou de CD (1)	Type II			(01/07 au 3	1/01										
Prairies implantées depuis plus de 6 mois	Type I							15,	.2 au /01 2)							
mois	Type II	(7)					15	/11 au 15/0 <i>(2)</i>	1							
Autres cultures (vignes, vergers, cultures maraîchères et cultures portegraines)	Type I et II								.2 au /01							
		é	pandage inter	dit	é	oandage a	autorise	é sous condi	tions		ép	andage a	utorisé			

- (1) En présence d'une culture, l'épandage d'effluents peu chargés (<0,5kg d'azote/m3) en fertirrigation est autorisé jusqu'au 31 août dans la limite de 50 kg d'azote efficace/ha. L'azote efficace est défini comme la somme de l'azote présent dans l'effluent peu chargé sous forme minérale et sous forme organique minéralisable entre le 1er Juillet et le 31 Août. => valable pour le TYPE
- (2) L'épandage des effluents peu chargés est autorisé dans cette période dans la limite de 20kg d'azote efficace/ha.
- (3) Dans la limite maximale de 70 kg d'N ammoniacal par ha ; Obligation de réaliser une pesée colza en sortie d'hiver
- (4) Dans la limite maximale de 60 kg d'N ammoniacal par ha ; Obligation de réaliser un reliquat d'azote minéral dans le sol à la sortie de l'hiver
- (5) L'épandage est interdit du 1er juillet à 15 jours avant l'implantation de la CIPAN ou de la dérobée et de 20 jours avant la destruction de la CIPAN ou de la récolte de la dérobée et jusqu'au 15 janvier. Le total des apports avant et sur la CIPAN ou la dérobée est limité à 70kg d'azote efficace/ha.
- (6) L'épandage est interdit du 1er juillet à 15 jours avant l'implantation de la CIPAN ou de la dérobée et de 20 jours avant la destruction de la CIPAN ou de la récolte de la dérobée et jusqu'au 31 janvier. La limite maximale de **50 kg d'N ammoniacal par ha**.
- (7) Dans la limite maximale de 70 kg d'N ammoniacal par ha

5.3 REGISTRE D'EPANDAGE

Data	Agriculteur		Parcelle			Epandage	e	Cult	ures	Occupants
Date	Nom Prénom	Réf. parcelle	Commune	SPE (ha)	Qté (t)	Surf. (ha)	Dose (t/ha)	Avant l'apport	Après l'apport	Commentaires
21/07/2020	PELLETIER Thierry	PELT01-02 ST MARTIN D ABBA		2,01	4,00	1,00	4,00	Prairie naturelle foin	Prairie naturelle foin	
21/07/2020	PELLETIER Thierry	PELT01-06	GERMIGNY DES PRES	2,6	11,10	2,60	4,27	Blé tendre	Prairie naturelle foin	

6 BILAN AGRONOMIQUE

6.1 COEFFICIENTS DE DISPONIBILITES DES ELEMENTS FERTILISANTS

Les coefficients de disponibilité pour les épandages peuvent varier selon les conditions climatiques et les périodes d'épandage.

Les coefficients de disponibilité de l'azote des boues la première année pris en référence sont ceux du référentiel régional de fertilisation azotée pour les cultures de printemps et ceux-ci-dessous pour les cultures d'automne (Référence Chambre d'agriculture des Pays de Loire).

Types de boues	Rapport C/N	Coefficient d'utilisation engrais par culture réceptrice et par période d'épandage										
		Colza août - septembre	Bié septembre - octobre	Prairie (avant semis) septembre - octobre	Bié - Colza sortie Niver	Prairie sortie hiver	Mais mars -avril	Prairie printemps				
Boues liquides	4à 5	45 %	25 %	30 %	45 %	45 %	50 %	30 %				
Boues pâteuses	5 à 6	45 %	25 %	30 %		45 %	45 %	30 %				
Boues chaulées	5 a 7	35 %	20 %	25 %		35 %	35 %	25 %				
Boues digérées	6à 8	30 %	15 %	15%		30 %	30 %	20 %				
Boues de lagunes	6 à 11	35 %	20 %	25.%		35 %	35 %	25 %				
Compost de boues	9 à 12	10 %	5%	5%		10 %	10 %	5%				

- 70 % du phosphore fourni est disponible pour la plante la première année.
- 100 % du potassium fourni est disponible pour la plante la première année.
- 100 % du calcium fourni est disponible pour la plante la première année.
- 100 % du magnésium fourni est disponible pour la plante la première année.

6.2 BILAN DES LIVRAISONS

Les bulletins de livraisons par agriculteur sont présents en annexe et transmis aux utilisateurs des boues.

6.3 BILAN DE FERTILISATION

Un bilan de fertilisation est réalisé pour chaque parcelle épandue dans l'année. Ce bilan prend en compte les apports par les boues en azote, phosphore et potassium disponibles, à comparer aux besoins des cultures.

Des conseils de fertilisation sont apportés à chaque agriculteur recevant les boues.

Ces conseils intègrent le complément à réaliser en éléments fertilisants (minéraux – organiques) en fonction des caractéristiques des parcelles (disponibilités du sol et ses fournitures, résidus des précédents, devenir des résidus de récolte, de retournement des prairies, des apports organiques...).

Bilan déficitaire								
 une partie des apports en azote doit être réalisée sous forme d'engrais minéraux au moment où la plante en a besoin 								
Bilan excédentaire								
■ Impasse en phosphore sur les cultures à venir								
 Raisonnement des apports sur 2 ans et plus 								

Potassium	Bilan déficitaire
	un complément doit être réalisé pour les parcelles déficientes et/ou pour les plantes à moyenne exigence (colza grain, maïs, herbe pâturée, ensilage, foin, tournesol).

Le bilan de fertilisation envoyé à l'agriculteur se trouve en annexe 2.

6.4 BILAN DE FUMURES SUR LES PARCELLES DE REFERENCE

Comme prévu par la réglementation, un certain nombre de parcelles de référence a été défini au sein du périmètre d'épandage parmi les points de référence de l'étude préalable.

Les épandages se faisant seulement à l'automne, les parcelles prises en compte cette année sont celles qui ont été épandues l'année dernière, c'est-à-dire les parcelles PRUD01- 02 et PELT01-02.

Aucun apport minéral n'a été réalisé sur les parcelles.

6.4.1 PARAMETRES DU BILAN AZOTÉ

Le principe de base est d'équilibrer les besoins de la culture avec l'azote fourni par le sol et les apports organiques et minéraux.

Cas des céréales :

Le référentiel régional détermine la dose d'apport d'azote minéral à apporter pour les céréales de la manière suivante :

$$X = Pf - Pi - Ri - Mh - Mhp - Mr - MrCi - Nirr + L + Rf - Xa$$

- X correspondant à la fertilisation complémentaire à effectuer en azote minéral
- Xa étant l'équivalence engrais azoté lié aux boues de la lagune (Xa = %Npro x Q x Keg)
- Pf est la quantité d'azote absorbé par la culture à la fermeture du bilan soit Pf = b (besoin par unité de production) x Y (objectif de rendement)
- Pi est la quantité d'azote absorbé par la culture à l'ouverture du bilan
- Ri est la quantité d'azote minéral dans le sol à l'ouverture du bilan (équivaut au Reliquat Sortie Hiver lorsque le bilan d'ouverture se situe en fin d'hiver)
- Mh correspond à la minéralisation nette de l'humus du sol (intègre les arrières effets des apports réguliers de produits résiduels organiques)
- Mhp correspond à la minéralisation nette due à un retournement de prairie
- Mr correspond à la minéralisation nette de résidus de récolte
- MrCi correspond à la minéralisation nette des résidus de culture intermédiaire
- Nirr correspond à l'azote apporté par l'eau d'irrigation
- L les pertes par lixiviation du nitrate sont négligées lorsque le bilan s'ouvre en fin d'hiver
- Rf est la quantité d'azote minéral dans le sol à la fermeture du bilan (azote non valorisable)

Cas des prairies :

X = (Pf - P0) / CAU - Xa

- X correspondant à la fertilisation complémentaire à effectuer en azote minéral
- Xa étant l'équivalence engrais azoté lié aux boues de la lagune (Xa = %Npro x Q x Keq)
- Pf est la quantité d'azote absorbé par la prairie jusqu'à la récolte soit Pf = MS (rendement) x %N (teneur en azote de l'herbe)
- P0 correspond aux **fournitures globales d'azote par le sol**, il correspond à l'addition des postes :

- Mh = Fourniture d'azote minéral par le sol liée aux fournitures des arrières effets du système de cultures
- Nrest = contribution directe des restitutions au pâturage de l'année
- Fs = quantité d'azote fixée par les légumineuses présentes
- CAU est le Coefficient Apparent d'Utilisation de l'engrais minéral, il est égal à 0,7

6.4.2 BILANS DE FUMURE DETAILLES

Un bilan complet détaillé par parcelle de référence est présent en annexe.

Il prend en compte l'ensemble des apports :

- l'apport en éléments fertilisants par les boues,
- l'apport en éléments fertilisants par d'autres engrais organiques éventuels,
- l'apport en engrais minéraux,
- les fournitures en éléments fertilisants par le sol

7 SUIVI DES FLUX

La pratique contrôlée des épandages permet une revalorisation des composants organiques et minéraux des boues.

Il convient cependant de vérifier que la répétition des épandages sur les parcelles ne présente pas de risque pour les sols, notamment d'accumulation en éléments traces métalliques.

Dans la continuité de l'étude préalable de plan d'épandage qui déterminait des valeurs initiales en éléments traces métalliques, SAUR assure un suivi pluriannuel sur les parcelles du périmètre.

7.1 FLUX EN MATIERES SECHES

L'arrêté du 8 janvier 1998 définit un seuil maximal d'apport de matières sèches égal à 30 T par hectare sur une période de 10 ans. Le tableau en annexe présente l'ensemble des apports en matières sèches pour chaque parcelle du plan d'épandage sur les 10 dernières années.

Depuis le début du suivi des épandages de boues de la station d'épuration de SEA SMAGY, aucune parcelle n'a atteint le seuil des 30 tonnes de matières sèches par hectare sur les 10 dernières années.

7.2 FLUX EN ELEMENTS TRACES METALLIQUES

La réglementation fixe un flux maximal admissible sur les parcelles épandues pour une période de 10 ans pour les éléments traces métalliques (Cd, Cr, Cu, Hg, Ni, Pb, Zn). Dès lors que les boues sont apportées sur des pâturages ou des sols ayant des pH inférieurs à 6, les teneurs limites sont renforcées.

Les tableaux en annexe présentent le flux moyen en éléments traces métalliques apportés par les boues sur les sols par rapport au flux maximal sur 10 ans imposé par la réglementation.

Les tableaux montrent que les quantités en éléments traces apportés par les boues sont faibles et largement inférieures aux maxima indiqués.

7.3 FLUX EN COMPOSES TRACES ORGANIQUES

La réglementation fixe un flux maximal admissible sur les parcelles épandues pour une période de 10 ans pour les composés traces organiques (PCB 28, 52, 101, 118, 138, 153, 180, fluoranthène, benzo(b)fluoranthène, benzo(a)pyrène).

Dès lors que les boues sont apportées sur des pâturages ou des sols ayant des pH inférieurs à 6, les teneurs limites sont renforcées.

Les tableaux en annexe présentent le flux moyen en composés traces organiques apportés par les boues sur les sols par rapport au flux maximal sur 10 ans imposé par la réglementation.

Les tableaux montrent que les quantités en éléments traces apportés par les boues sont faibles et largement inférieures aux maxima indiqués.

8 POINT SUR LA FILIERE

Mise à part la gestion des boues « non covid » et « covid » aucune difficulté particulière n'a été rencontrée quant à la mise en œuvre des épandages.

8.1 CAPACITE DE STOCKAGE

L'arrêté du 8 janvier 1998 impose que « des capacités d'entreposage [soient] aménagées [...] pour tenir compte des différentes périodes où l'épandage est soit interdit, soit rendu impossible ».

La capacité actuelle d'entreposage des boues sur la station d'épuration est d'un peu plus d'un an.

Cette capacité semble suffisante étant données les surfaces disponibles du plan d'épandage actuel.

8.2 ETAT DES LIEUX DU PLAN D'ÉPANDAGE

Suite à de nombreuses modifications de surfaces, le plan d'épandage a été remis à jour en 2018.

Date de réalisation du plan d'épandage :	Mai 2018
Date du récépissé de déclaration :	24/05/2018
Nombre d'exploitants :	4
Surface agricole utile (SAU) intégrée à l'étude :	87,33 ha
Surface potentiellement épandable (SPE) intégrée à l'étude :	82,54 ha

9 CONCLUSION

En 2020, seule une partie des boues ont été épandues, correspondant aux boues « non covid » c'està-dire les boues produites avant le début de l'épidémie (20/03/20 pour le Loiret); il a donc été épandue 15,10 t de boues brutes, soit 11,58 tonnes de matières sèches sur 3,60 hectares. Les épandages ont été réalisés dans le respect de la réglementation.

Les analyses de boues montrent que le produit présente un intérêt agronomique certain. Le suivi agronomique réalisé permet d'optimiser la valorisation du produit par les agriculteurs et la pérennité de cette filière.

Le stockage sur la station est suffisant pour faire face aux périodes d'interdiction d'épandage.

Par ailleurs, le suivi pluriannuel des parcelles sur les éléments traces métalliques garantit contre tout risque d'accumulation dans les sols épandus.

Ainsi, la valorisation agricole des boues produites par le traitement des eaux apparaît comme une solution intéressante pour l'environnement, pour les agriculteurs, ainsi que pour la collectivité.

ANNEXES

<u>ANNEXE 1</u>	Analyses de boues
ANNEXE 2 –	BULLETINS DE LIVRAISON
<u>Annexe 3</u> –	BILANS PAR PARCELLE DE REFERENCE
<u>Annexe 4</u> –	ANALYSES DE SOLS
<u>Annexe 5</u> –	FLUX EN TONNES DE MATIERES SECHES PAR HECTARE EN 10 ANS
<u>Annexe 6</u> –	FLUX CUMULES EN ELEMENTS TRACES METALLIQUES ET ORGANIQUES
ANNEXE 7	CARTOGRAPHIE DES PARCELLES EPANDUES EN 2020

ANNEXE 1

ANALYSES DE BOUES

RAPPORT D'ESSAIS N° PORL20012677

N° Client : 5033572

Nom Client : STEP SEA SMAGY

Adresse: * 45110 SAINT MARTIN D ABBAT

Organisme: SAUR 45

Identification de l'échantillon : BOUES SECHES SMAGY 01 - 2020

Type de produit : Boue urbaine Point de prélèvement : BOUE

Date prélèvement : 28/05/2020 Date de réception : 29/05/2020

Date de sortie : 13/08/2020 (v.2) Date de début de l'essai : 29/05/2020

Délai de conservation de l'échantillon brut : 4 semaines

N° Echantillon : 93218681

Échantillon prélevé par le techi	nicien	Résultats	Unité sur Matière	Résultats sur Matière	Unité sur Matière	
ANALYSE PHYSICO-CHIMIQUE		sur Matière Sèche	Sèche	Brute	Brute	
Carbone organique (calcul)		35,7	%	32,3	%	
ъ Humidité	MI LCA17-ECH-IT-011	33,7	70	9,5	%	
Φ Matière minérale	AUREA 17-AME-IT-003	28,6	%	258,7	kg / t	
Matière Organique Matière Organique	AUREA 17-AME-IT-003	71.4	%	646,0	kg / t	
Matière Sèche Matière Sèche		71,7	,,,	90,5	%	
p pH	MI LCA17-ECH-IT-011 NF EN 15933			6,1	70	
•				0,1		
Analyse de la valeur agrono	<u> </u>					
Azote ammoniacal (N-NH ₄)	Méthode interne	< 0,262	g/kg	< 0,237	kg / t	
Depth Azote Kjeldhal (v)	NF EN 13342	65,9	g/kg	59,6	kg / t	
Azote nitrique (N-NO ₃)			g/kg		kg / t	
Azote nitreux (N-NO ₂)			g/kg		kg / t	
D CaO	NF EN ISO 11885	21,8	g/kg	19,7	kg / t	
Rapport C/N (calcul) (v)		5,4				
p K₂O	NF EN ISO 11885	7,0	g/kg	6,4	kg / t	
p MgO	NF EN ISO 11885	5,4	g/kg	4,9	kg / t	
Na ₂ O	NF EN ISO 11885	0,68	g/kg	0,61	kg / t	
P ₂ O ₅	NF EN ISO 11885	75,3	g/kg	68,1	kg / t	
SO ₃			g/kg		kg / t	
OLIGO-ÉLÉMENTS						
	NE EN ICO 44005	00.4	maller.	05.4	~/b	
Bore	NF EN ISO 11885	28,1	mg/kg	25,4	g/t	
Cobalt	NF EN ISO 11885	4,2	mg/kg	3,8	g/t	
Cuivre	NF EN ISO 11885	127	mg/kg	115	g/t	
p Fer	NF EN ISO 11885	64100	mg/kg	58100	g/t	
Manganèse	NF EN ISO 11885	108	mg/kg	97,8	g/t	
Molybdène	NF EN ISO 11885	3,7	mg/kg	3,4	g/t	
⊅ Zinc	NF EN ISO 11885	627	mg/kg	568	g/t	
ÉLÉMENTS TRACES MÉTALLIQUES						
Aluminium			mg/kg		g/t	
Arsenic			mg/kg		g/t	
Cadmium	NF EN ISO 11885	0,73	mg/kg	0,66	g/t	
Chrome	NF EN ISO 11885	20,6	mg/kg	18,7	g/t	
D Cuivre	NF EN ISO 11885	127	mg/kg	115	g/t	
P Mercure	NF EN ISO 16772	0,24	mg/kg	0,22	g/t	
P Nickel	NF EN ISO 11885	25,6	mg/kg	23,1	g/t	
⊅ Plomb	NF EN ISO 11885	19,3	mg/kg	17,5	g/t	
Sélénium			mg/kg		g/t	
D Zinc	NF EN ISO 11885	627	mg/kg	568	g/t	
Cr + Cu + Ni + Zn	calcul	800	mg/kg	724	g/t	
Teneur en composés-traces c		600	lligikg	124	git	
olyChloro Biphényles (PCB) Dongénères 28	MI LCA17-AME-IT-002 et XP X 33-012	< 0,008	ma/ka	< 7,24	mg/t	
		·	mg/kg			
Congénères 52	MI LCA17-AME-IT-002 et XP X 33-012	< 0,008	mg/kg	< 7,24	mg/t	
Congénères 101	MI LCA17-AME-IT-002 et XP X 33-012	< 0,008	mg/kg	< 7,24	mg/t	
Congénères 118	MI LCA17-AME-IT-002 et XP X 33-012	< 0,008	mg/kg	< 7,24	mg/t	
h Congénèree 138	MI I CA 17 AME IT 002 of VD V 22 012	. 0 000	ma/ka	. 7.24	ma/t	

φ Fluoranthène mg/kg mg/t MI LCA17-AME-IT-002 et XP X 33-012 0.058 52.5 φ Benzo (B) Fluoranthène mg/kg mg/t MI LCA17-AME-IT-002 et XP X 33-012 < 0,042 < 38,0 φ Benzo (A)Pyrène MI LCA17-AME-IT-002 et XP X 33-012 mg/kg mg/t < 38.0 < 0,042

< 0,008

< 0,008

< 0,008

< 0,056

mg/kg

mg/kg

mg/kg

mg/kg

Commentaires

Φ Congénères 138

φ Congénères 153

φ Congénères 180

Somme des 7 PCB

Ce rapport annule et remplace le précèdent dont la référence est : PORL20012677 version V1. Afin d'éviter toutes erreurs d'utilisation des résultats, nous vous invitons à nous retourner le rapport d'essai (PORL20012677 version V1). Si cela n'est pas possible, nous vous demandons de détruire l'original et les éventuelles copies. Dans tous les cas, le laboratoire AUREA se dégage de toute responsabilité quant à l'utilisation des résultats sur le rapport d'essai (PORL20012677 version

MI LCA17-AME-IT-002 et XP X 33-012

MI LCA17-AME-IT-002 et XP X 33-012

MI LCA17-AME-IT-002 et XP X 33-012

Les déterminations suivies de (v) ont fait l'objet d'une vérification interne.

Hydrocarbures Aromatiques Polycycliques (HAP)

calcul

Sabine MAISON Technicien(ne) laboratoire

< 7,24

< 7,24

< 7,24

< 50,7

Fait à La Rochelle, le 13/08/2020

mg/t

mg/t

mg/t

mg/t

La portée d'accréditation concerne 1 page et 0 annexe(s). Seules certaines déterminations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole 6. Les incertitudes de mesure sont disponibles sur le site internet du laboratoire (www.aurea.eu), rubrique «qualité». Ce rapport d'analyses ne concerne que l'échantillon soumis à l'analyse. Sa reproduction n'est autorisée que sous sa forme intégrale, Il ne doit pas être reproduit partiellement sans l'approbation du

RAPPORT D'ESSAIS N° PORL20012646

N° Client : 5033572

Nom Client : STEP SEA SMAGY

Adresse: * 45110 SAINT MARTIN D ABBAT

Organisme: SAUR 45

Identification de l'échantillon : BOUES SECHES SMAGY 02 - 2020

Type de produit : Boue urbaine Point de prélèvement : BOUE

Date prélèvement : 28/05/2020 Date de réception : 29/05/2020

Date de sortie : 13/08/2020 (v.2) Date de début de l'essai : 29/05/2020

Délai de conservation de l'échantillon brut : 4 semaines N° Echantillon : 93218740

Échantillon prélevé par le techn ANALYSE PHYSICO-CHIMIQUE		Résultats sur Matière Sèche	Unité sur Matière Sèche	Résultats sur Matière Brute	Unité sur Matière Brute	
Carbone organique (calcul)		24.6	%	27,3	%	
Φ Humidité	MILCAAZ FOLLIT 044	31,6	70	13,7	%	
Φ Matière minérale	MI LCA17-ECH-IT-011 AUREA 17-AME-IT-003	36,7	%	316,8	kg / t	
Φ Matière Organique	AUREA 17-AME-IT-003	63,3	%	546,0	kg / t	
 Matière Sèche 		00,0	70	86,3	%	
φ pH	MI LCA17-ECH-IT-011			7,0	70	
•	NF EN 15933			1,0		
ANALYSE DE LA VALEUR AGRONO	•					
Azote ammoniacal (N-NH ₄)	Méthode interne	0,786	g/kg	0,678	kg / t	
Φ Azote Kjeldhal (v)	NF EN 13342	54,1	g/kg	46,7	kg / t	
Azote nitrique (N-NO ₃)			g/kg		kg / t	
Azote nitreux (N-NO ₂)			g/kg		kg / t	
ф СаО	NF EN ISO 11885	22,7	g/kg	19,6	kg / t	
Rapport C/N (calcul) (v)		5,9				
Φ K ₂ O	NF EN ISO 11885	6,6	g/kg	5,7	kg / t	
φ MgO	NF EN ISO 11885	5,8	g/kg	5,0	kg / t	
Na ₂ O	NF EN ISO 11885	1,1	g/kg	0,94	kg / t	
Φ P ₂ O ₅	NF EN ISO 11885	91,5	g/kg	79,0	kg / t	
SO ₃			g/kg		kg / t	
Oligo-éléments						
Bore	NF EN ISO 11885	32,7	mg/kg	28,2	g/t	
φ Cobalt	NF EN ISO 11885	8,0	mg/kg	6,9	g/t	
φ Cuivre	NF EN ISO 11885	144	mg/kg	125	g/t	
φ Fer	NF EN ISO 11885	123000	mg/kg	106000	g/t	
φ Manganèse	NF EN ISO 11885	122	mg/kg	105	g/t	
Molybdène	NF EN ISO 11885	5,2	mg/kg	4,5	g/t	
Φ Zinc	NF EN ISO 11885	741	mg/kg	639	g/t	
ÉLÉMENTS TRACES MÉTALLIQUES						
Aluminium			mg/kg		g/t	
Arsenic			mg/kg		g/t	
Ф Cadmium	NF EN ISO 11885	0,74	mg/kg	0,64	g/t	
Ф Chrome	NF EN ISO 11885	25,9	mg/kg	22,3	g/t	
Ф Cuivre	NF EN ISO 11885	144	mg/kg	125	g/t	
Φ Mercure	NF EN ISO 16772	0,36	mg/kg	0,31	g/t	
Φ Nickel	NF EN ISO 11885	25,3	mg/kg	21,9	g/t	
Ф Plomb	NF EN ISO 11885	24,5	mg/kg	21,1	g/t	
Sélénium	NF EN ISO 11885	< 1,9	mg/kg	< 1,7	g/t	
Φ Zinc	NF EN ISO 11885	741	mg/kg	639	g/t	
Cr + Cu + Ni + Zn	calcul	936	mg/kg	808	g/t	
TENEUR EN COMPOSÉS-TRACES O	PRGANIQUES					
PolyChloro Biphényles (PCB) Φ Congénères 28	MI LCA17-AME-IT-002 et XP X 33-012	< 0,008	mg/kg	< 6.9	mg/t	
. 231190110100 20	MI 04 7 445 TOTAL	,		1.0,0		

Hydrocarbures Aromatiques Polycycliques (HAP)										
φ Fluoranthène	MI LCA17-AME-IT-002 et XP X 33-012	0,121	mg/kg	104	mg/t					
φ Benzo (B) Fluoranthène	MI LCA17-AME-IT-002 et XP X 33-012	0,060	mg/kg	51,8	mg/t					
Φ Benzo (A)Pyrène	MI LCA17-AME-IT-002 et XP X 33-012	< 0.041	mg/kg	< 35.4	mg/t					

< 0,008

< 0,008

< 0,008

< 0,008

< 0,008

< 0,008

< 0,056

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

Commentaires

Φ Congénères 52

Φ Congénères 101

φ Congénères 118

Φ Congénères 138

φ Congénères 153

φ Congénères 180

Somme des 7 PCB

Ce rapport annule et remplace le précèdent dont la référence est : PORL20012646 version V1. Afin d'éviter toutes erreurs d'utilisation des résultats, nous vous invitons à nous retourner le rapport d'essai (PORL20012646 version V1). Si cela n'est pas possible, nous vous derrandons de détruire l'original et les éventuelles copies. Dans tous les cas, le laboratoire AUREA se dégage de toute responsabilité quant à l'utilisation des résultats sur le rapport d'essai (PORL20012646 version

MI LCA17-AME-IT-002 et XP X 33-012

Les déterminations suivies de (v) ont fait l'objet d'une vérification interne.

calcul

Sabine MAISON
Technicien(ne) laboratoire

< 6,9

< 6.9

< 6,9

< 6.9

< 6,9

< 6,9

< 48,4

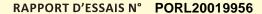
Fait à La Rochelle, le 13/08/2020

ma/t

mg/t

mg/t

mg/t


mg/t

mg/t

mg/t

La portée d'accréditation concerne 1 page et 0 annexe(s). Seules certaines déterminations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole . Les incertitudes de mesure sont disponibles sur le site internet du laboratoire (www.aurea.eu), rubrique «qualité». Ce rapport d'analyses ne concerne que l'échantillon soumis à l'analyse. Sa reproduction n'est autorisée que sous sa forme intégrale, il ne doit pas être reproduit partiellement sans l'approbation du

N° Client: 5033572 Nom Client :

STEP SEA SMAGY Adresse: * 45110 SAINT MARTIN D ABBAT

Organisme: SAUR 45

Identification de l'échantillon : BOUES SECHES SMAGY 03 - 2020

Type de produit : Boue urbaine Point de prélèvement : BOUE

Date prélèvement : 21/07/2020 Date de réception : 22/07/2020

Date de sortie : 29/07/2020 (v.1)
Date de début de l'essai : 22/07/2020 Délai de conservation de l'échantillon brut : 4 semaines

N° Echantillon: 93218774

Échantillon prélevé par le tec	ennicien	Résultats	Unité sur Matière	Résultats sur Matière	Unité sur Matière	
Analyse physico-chimique		sur Matière Sèche	Sèche	Brute	Brute	
Carbone organique (calcul)		31,2	%	23,4	%	
φ Humidité	MI LCA17-ECH-IT-011	0.,2		24,9	%	
Φ Matière minérale	AUREA 17-AME-IT-003	37,7	%	282,9	kg/t	
Φ Matière Organique	AUREA 17-AME-IT-003	62,3	%	468,0	kg / t	
φ Matière Sèche	MI LCA17-ECH-IT-011	,		75,1	%	
т рН	NF EN 15933			6,6		
Analyse de la valeur agron						
Azote ammoniacal (N-NH ₄)	Méthode interne	2,32	g/kg	1,74	kg / t	
Azote Kjeldhal	NF EN 13342	44,3	g/kg	33,3	kg/t	
Azote nitrique (N-NO ₃)	INF EIN 13342		g/kg		kg/t	
Azote nitreux (N-NO ₂)			g/kg		kg/t	
→ CaO	NE EN ISO 11995		g/kg	1	kg/t	
Rapport C/N (calcul)	NF EN ISO 11885	23,0 7,0	erre	17,2	ng, t	
• K ₂ O	NF EN ISO 11885	5,9	g/kg	4,4	kg/t	
p MgO	NF EN ISO 11885	5,5	g/kg	4,1	kg / t	
Na₂O	NF EN ISO 11885	1,3	g/kg	0,95	kg / t	
P₂O₅	NF EN ISO 11885	84,3	g/kg	63,3	kg / t	
SO ₃	NF EN ISO 11865	04,3	g/kg	03,3	kg / t	
			3 3			
OLIGO-ÉLÉMENTS						
Bore	NF EN ISO 11885	34,1	mg/kg	25,6	g/t	
Cobalt			mg/kg		g/t	
Cuivre			mg/kg		g/t	
p Fer	NF EN ISO 11885	113000	mg/kg	85200	g/t	
Manganèse	NF EN ISO 11885	136	mg/kg	102	g/t	
Molybdène			mg/kg		g/t	
Zinc			mg/kg		g/t	
ÉLÉMENTS TRACES MÉTALLIQUE	ES					
Aluminium			mg/kg		g/t	
Arsenic			mg/kg		g/t	
Cadmium			mg/kg		g/t	
Chrome			mg/kg		g/t	
Cuivre			mg/kg		g/t	
Mercure			mg/kg		g/t	
Nickel			mg/kg		g/t	
Plomb			mg/kg		g/t	
Sélénium			mg/kg		g/t	
Zinc			mg/kg		g/t	
Cr + Cu + Ni + Zn	calcul		mg/kg		g/t	
TENEUR EN COMPOSÉS-TRACES	G ORGANIQUES					
Congénères 28			mg/kg		mg/t	
Congénères 52			mg/kg		mg/t	
Congénères 101			mg/kg		mg/t	
Congénères 118			mg/kg		mg/t	
0			man/len		ma/t	

Fluoranthène

Benzo (A)Pyrène

Congénères 138

Congénères 153

Congénères 180

Somme des 7 PCB

calcul

Commentaires : Ce rapport est la version originale.

Benzo (B) Fluoranthène

Hydrocarbures Aromatiques Polycycliques (HAP)

Fait à La Rochelle, le 29/07/2020

- - -

Magalie SAFFRE Responsable technique chimie

mg/t

mg/t

mg/t

mg/t

mg/t

mg/t

mg/t

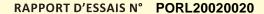
La portée d'accréditation concerne 1 page et 0 annexe(s). Seules certaines déterminations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole 6. Les incertitudes de mesure sont disponibles sur le site internet du laboratoire (www.aurea.eu), rubrique «qualité». Ce rapport d'analyses ne concerne que l'échantillon soumis à l'analyse. Sa reproduction n'est autorisée que sous sa forme intégrale, il ne doit pas être reproduit partiellement sans l'approbation du

- - -

mg/kg

mg/kg

mg/kg


mg/kg

mg/kg

mg/kg

mg/kg

N° Client : 5033572

Nom Client : STEP SEA SMAGY

Adresse: * 45110 SAINT MARTIN D ABBAT

Organisme: SAUR 45 Identification de l'échantillon : BOUES SECHES SMAGY 04 - 2020

Type de produit : Boue urbaine Point de prélèvement :

Date prélèvement : 21/07/2020 Date de réception : 22/07/2020

Date de sortie : 29/07/2020 (v.1)
Date de début de l'essai : 22/07/2020

Délai de conservation de l'échantillon brut : 4 semaines

N° Echantillon: 93218794

Tolk do prolovement.					
Échantillon prélevé par le clien	t	77. 11.1		5/ // // //	
		Résultats sur Matière Sèche	Unité sur Matière Sèche	Résultats sur Matière Brute	Unité sur Matière Brute
ANALYSE PHYSICO-CHIMIQUE					
Carbone organique (calcul)		32,3	%	25,3	%
p Humidité	MI LCA17-ECH-IT-011			21,7	%
Matière minérale	AUREA 17-AME-IT-003	35,5	%	277,8	kg / t
Matière Organique	AUREA 17-AME-IT-003	64,5	%	505,0	kg / t
Matière Sèche	MI LCA17-ECH-IT-011			78,3	%
p pH	NF EN 15933			6,8	
Analyse de la valeur agrono	MIQUE				
Azote ammoniacal (N-NH ₄)	Méthode interne	1,23	g/kg	0,963	kg / t
Azote Kjeldhal	NF EN 13342	68,2	g/kg	53,4	kg / t
Azote nitrique (N-NO ₃)			g/kg		kg / t
Azote nitreux (N-NO ₂)			g/kg		kg / t
CaO	NF EN ISO 11885	23,6	g/kg	18,5	kg / t
Rapport C/N (calcul)		4,7			
K ₂ O	NF EN ISO 11885	6,4	g/kg	5,0	kg / t
o MgO	NF EN ISO 11885	5,5	g/kg	4,3	kg / t
Na ₂ O	NF EN ISO 11885	1,0	g/kg	0,80	kg / t
P ₂ O ₅	NF EN ISO 11885	80,6	g/kg	63,1	kg / t
SO ₃			g/kg		kg / t
OLIGO-ÉLÉMENTS					
Bore	NF EN ISO 11885	30,0	mg/kg	23,5	g/t
Cobalt	NI LINISO 11883	30,0	mg/kg	25,5	g/t
Cuivre			mg/kg		g/t
Fer Ser	NE EN 100 44005		mg/kg		g/t
Manganèse	NF EN ISO 11885	97400	mg/kg	76300	g/t
Molybdène	NF EN ISO 11885	126	mg/kg	98,7	g/t
Zinc			mg/kg		g/t
			mg/ng		9/1
ÉLÉMENTS TRACES MÉTALLIQUES					
Aluminium			mg/kg		g/t
Arsenic			mg/kg		g/t
Cadmium			mg/kg		g/t
Chrome			mg/kg		g/t
Cuivre			mg/kg		g/t
Mercure			mg/kg		g/t
Nickel			mg/kg		g/t
Plomb			mg/kg		g/t
Sélénium			mg/kg		g/t
Zinc			mg/kg		g/t
Cr + Cu + Ni + Zn	calcul		mg/kg		g/t
ENEUR EN COMPOSÉS-TRACES O	RGANIQUES				
Congénères 28	-		mg/kg		mg/t
Congénères 52			mg/kg		mg/t
Congénères 101			mg/kg		mg/t
Congénères 118			mg/kg		mg/t
Congénères 138			mg/kg		mg/t
0			,,		

Fluoranthène

Benzo (A)Pyrène

Congénères 153

Congénères 180

Somme des 7 PCB

calcul

Commentaires : Ce rapport est la version originale.

Benzo (B) Fluoranthène

Hydrocarbures Aromatiques Polycycliques (HAP)

Fait à La Rochelle, le 29/07/2020

- - -

Magalie SAFFRE Responsable technique chimie

mg/t

mg/t

mg/t

mg/t

mg/t

mg/t

La portée d'accréditation concerne 1 page et 0 annexe(s). Seules certaines déterminations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole o. Les incertitudes de mesure sont disponibles sur le site internet du laboratoire (www.aurea.eu), rubrique «qualité». Ce rapport d'analyses ne concerne que l'échantillon soumis à l'analyse. Sa reproduction n'est autorisée que sous sa forme intégrale, il ne doit pas être reproduit partiellement sans l'approbation du

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

ANNEXE 2

BULLETINS DE LIVRAISON

Bilan des livraisons

(dut

SEA SMAGY

Boues sèches - SEA SMAGY

Exploitation : PELLETIER Thierry

41 route des chaintres

45110 ST MARTIN D ABBAT

Raison sociale : SCEA La Côte des Chaintres - 494 726 763 00019

Total éléments apportés par les boues

Total éléments disponibles première année

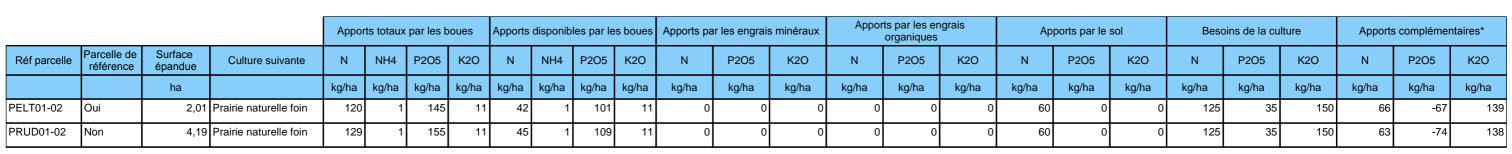
Date	E.T.A.	Réf. parcelle	Commune	Surf.	Qté.	Dose	N	NH4	P2O5	K20	CaO	MgO	N	NH4	P2O5	K20	CaO	MgO
				ha	t	t/ha			kg	/ha					kg	/ha		
21/07/2020	MICHAUT JEAN YVES	PELT01-02	ST MARTIN D ABBA (4		4,0	4,0	173	5	253	19	72	17	61	5	177	19	72	17
Culture avai	nt Prairie naturelle foin	C	Culture après Prair	e naturelle	foin													
21/07/2020	MICHAUT JEAN YVES	PELT01-06	GERMIGNY DES PRE (4	- , -	11,1	4,3	185	6	270	20	76	18	65	6	189	20	76	18
Culture avai	nt Blé tendre	C	Culture après Prair	e naturelle	foin													

Total	Total		Total éléments apportés en Kg						Total éléi	ments dis	ponibles	en Kg	
3,6	15,1	654	20	954	71	270	64	229	20	668	71	270	64

Commentaires: Les valeurs agronomiques indiquées correspondent à des estimations d'apport à partir des analyses réalisées et de coefficients de minéralisation moyens. Ces coefficients pouvant varier en fonction des conditions climatiques et des périodes d'épandage.

ANNEXE 3

BILANS PAR PARCELLE DE REFERENCE



Bilan de fumures - Parcelles de référence

DOSSIER: SEA SMAGY

Produit : Boues sèches - SEA SMAGY

Période du : 01/01/2019 Au : 31/08/2019

Dose moyenne d'épandage (en MB) : 2,1 t/ha

Dose moyenne d'épandage (en MS) : 1,8 t MS/ha

^{*} Apports complémentaires conseillés pouvant varier en fonction des conditions climatiques et des périodes d'épandage

ANNEXE 4

ANALYSES DE SOLS

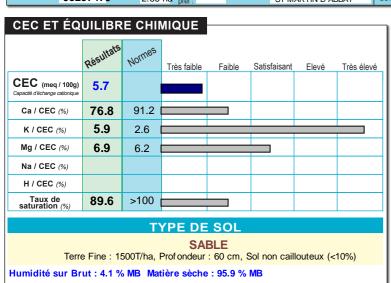
Analyse de terre

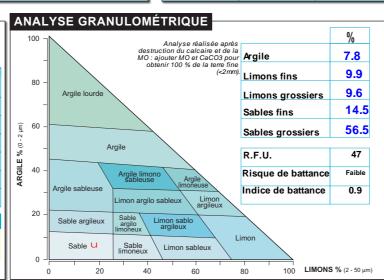
ANALYSE RÉALISÉE POUR

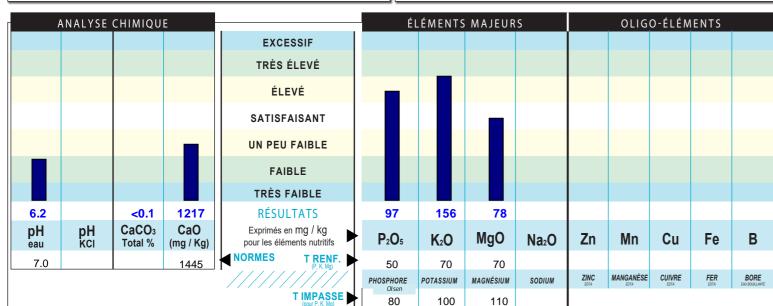
SCEA COTE DES CHAINTRES

41 RUE DES CHAINTRES 45110 ST MARTIN D ABBAT

N°Ilot: 06 - La messagerie

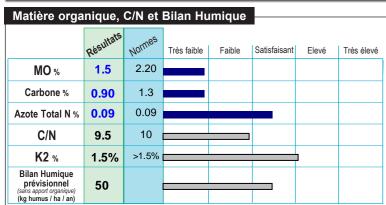

ORGANISME INTERMÉDIAIRE:

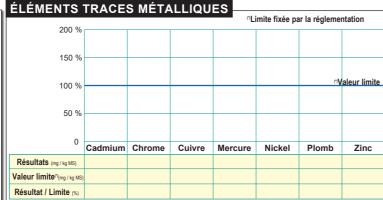

SAUR 45


CENTRE VAL DE LOIRE 68 RUE DU CLOS RENARD 45110 CHÂTEAUNEUF-SUR-LOIRE

TECHNICIEN: Aud	e RAOUL	
ZONE :		
Prélevé le :	Arrivée labo :	Sortie labo :
28/05/2020	08/06/2020	24/06/2020

PARCELLE: PELT01-06-2020 LATITUDE : 6749347 N° laboratoire : **93297479**Surface : 2.66 ha Prof. Commune: ST MARTIN D ABBAT LONGITUDE : 645774





pH-CaO: Sol moy ennement acide. Afin de créer des conditions de culture plus favorables, un chaulage est fortement recommandé.

T renforcement et T impasse : les valeurs indiquées correspondent aux normes d'interprétation pour le type de sol désigné et pour la culture la plus exigeante des trois cultures prévues. Le graphe d'interprétation est donc basé sur la culture la plus exigeante.

AUTRES ÉLÉI	MENTS											
Autres éléments	Al échangeable	Al total	Se total (mg / kg sec)	Arsenic total	Ca Actif	Cobalt (mg / kg sec)	Mo total (mg / kg sec)	Fer total	Mn total (mg / kg sec)	Bore total	N NH4 (mg / kg sec)	
Résultats											2.00	

PARCELLE : PELT01-06-2020 (2.66 ha)

Bon de Commande: 20062342 YA

HISTORIQUE DE FERTILISATION

		Apport	Apport Minéral				
	CULTURE	Rdt	Résidus	P ₂ O ₅	K₂O	Organique	
Antéprécédent	MAIS GRAIN	30	Enf ouis	OUI	OUI	NON	
Précédent	BLE	65	Enf ouis	OUI	OUI	NON	
Nombre d'années	sans apport dep	uis la der	nière fertilis	ation: P	0 K	0	

AUREA, agréé pour l'analyse de terre par le Ministère de l'alimentation, de l'agriculture et de la pêche sur les programmes T1,T2,T3,T4 et T5.

INTERPRÉTATION ET CONSEILS DE FUMURE PK

Interprétation et conseils de fumure PK réalisés par AUREA selon le référentiel «COMIFER» (table exportations version 2007 et grille de calcul de fumure version

* Les normes d'interprétation PK sont établies par type de sol et par classe d'exigence des cultures.

Les coefficients multiplicateurs des exportations sont obtenus en fonction de la richesse du sol, du nombre d'années sans apport (de P ou de K), de la classe d'exigence de la culture et de la destination des résidus pour K.

PLAN PRÉVISIONNEL DE FERTILISATION (COMIFER)

Guide d'apport oligo-éléments

Classe d'exigence (pour P2O5, K2O, MgO) ou de sensibilité des cultures à la carence en oligo-éléments :

faible moyenne delevée

1ère CL	LTURE (*)	PRAIRIE TE	MP.FAUCH	EE 5T Résid	us : Enfouis		
		PHOSPHORE P ₂ O ₅	POTASSE K ₂ O	MAGNÉSIE MgO	CALCIUM CaO		Zn Zinc
EXIGEN	CE CULTURE	¢ ¢	¢ ¢	¢	сс	SENSIBILITY COLUMN COLU	
Normes	T renforcement	50	70			MOXENNE	
d'interprétati	on Timpasse	80	100			ගි ට FAIBLE	
Exportations		35	140	5	60	APPORT CONSEILLÉ	
Coefficient m	ultiplicateur (2)	0	0			QUANTITÉ Kg / ha	
Conseil de fu	Imure (kg / ha) (1) x (2)			15	1000		
Apport minéra	complémentaire						

JM			Zn Zinc	Mn Manganèse	Cu Cuivre	Fe Fer	B Bore	Mo Molybdène
	SENSIBILITÉ DE LA CULTURE	ÉLEVÉE						
	ISIBII DE L/ JLTUI	MOYENNE						
	SEN	FAIBLE						
	APPOR	T CONSEILLÉ						
	QUA	NTITÉ Kg / ha					1	
)								

B Mo

B Mo

2ème CUL	TURE (*)	PRAIRIE TE	MP.FAUCH	EE 5T Résid	dus : Enfouis							
		PHOSPHORE P ₂ O ₅	POTASSE K,O	MAGNÉSIE MgO	CALCIUM CaO			Zn Zinc	Mn Manganèse	Cu Cuivre	Fe Fer	L
EXIGENCE	CULTURE	СС	СС	¢	СС	SENSIBILITÉ COLLTA COLL						L
Normes	T renforcement	50	70			SBE	MOYENNE					
d'interprétation		80	100			SE	FAIBLE					
Exportations (kg		35	140	5	60	APPORT CONSEILLÉ						Γ
Coefficient mult	iplicateur (2)	0.8	0.6			QUAN	TITÉ Kg / ha					
Conseil de fum	ure (kg / ha) (1) x (2)	30	85	15	400							
Apport minéral co	mplémentaire											

3ème CUL	TURE (*)	PRAIRIE TE	EMP.FAUCH	EE 5 T Rési	dus : Enfouis						
		PHOSPHORE P ₂ O ₅	POTASSE K,O	MAGNÉSIE MgO	CALCIUM CaO			Zn Zinc	Mn Manganèse	Cu Cuivre	Fe Fer
EXIGENCE	CULTURE	сс	СС	¢	сс	SENSIBILITÉ DE LA CULTURE	ÉLEVÉE				
	T renforcement	50	70			SEL	MOYENNE				
d'interprétation	T impasse	80	100			SEP	FAIBLE				
Exportations (kg		35	140	5	60	APPOR'	T CONSEILLÉ				
Coefficient multi	iplicateur (2)	0	0			QUAN	TITÉ Kg/ha				
Conseil de fumi	ure (kg / ha) (1) x (2)			15	350						
Apport minéral co	mplémentaire										

Définitions: (1) Exportations: éléments exportés par la récolte. EXIGENCE CULTURE: classification établie par le COMIFER

10

CONSEIL MOYEN ANNUEL

MOYENNE SUR LA ROTAT	MOYENNE SUR LA ROTATION													
(unités / ha)	PHOSPHORE P ₂ O ₅	POTASSE K ₂ O	MAGNÉSIE MgO	CALCIUM CaO										
SOMME DES EXPORTATIONS (1)	105	420	15	180										
COEF MULTIPLICATEUR MOYEN (2)	0.3	0.2	3.0											
CONSEILS DE FUMURE (3) = (1) x (2)	30	85	45	1750										
RENFORCEMENT (+) / DESTOCKAGE (-)	- 75	- 335	+ 30											

28

Les doses P K sont calculées dans l'hypothèse où les apports conseillés sont effectivement réalisés (si un apport annuel conseillé est remplacé par une impasse. le coefficient multiplicateur attribué à la culture suivante doit être majoré)

Dans le cas de ramassage des pailles, sur une culture N, on compense les unités PK exportées par les pailles sur la culture N+1, à condition que la teneur du sol soit inférieure à T impasse.

la Fertilisation Raisonnée

Pour les oligo-éléments, les quantités conseillées sont exprimées en kg d'éléments purs apportés au sol. Pour tout apport en foliaire, se référer aux préconisations du fabricant. COMIFER : Comité Français d'étude et de développement de

Méthode d'analyses: Analyse granulométrique après décarbonatation (X 31.107). CEC Metson (NF X 31.130). Matières organiques: carbone organique x 1,72 (NF ISO 14235). N TOTAL: méthode DUMAS (NF ISO 13878). pH eau: extraction eau, "acidité active" (NF ISO 10390). CaCo: TOTAL (NF ISO 10693). Cations échangeables Ca⁺; K., Na⁺, Mg⁺, extraits à l'acétate d'ammonium (NF X 31.108). Phosphore: méthode Joret-Hébert (NF X 31.161), méthode Olsen (NF ISO 11263, méthode Olyer (NF X 31.160)). Oligos: Cu, Mn, Fe, et Zh extraits au chétale EDTA (NF X 31.120). Bore soluble à l'eau bouillante VX 31.120). Eléments Traces Métalliques: NF ISO 11885.

AUREA est agréé pour l'analyse de terre par le ministère de l'alimentation, de l'agriculture et de la pêche sur les programmes T1 (physico-chimique), T2 (granulométrie + T1), T3 (oligo-éléments + T1), T4 (éléments traces + T1), T5 (reliquats azotés).

AUREA - 270 Allée de la Pomme de Pin, 45160 Ardon Tél. 01.44.31.40.40 - Fax. 01.44.31.40.41

ANNEXE 5

FLUX EN TONNES DE MATIERES SECHES PAR HECTARE EN 10 ANS

Suivi pluriannuel - Flux en MS

DOSSIER : SEA SMAGY

Produit : Boues sèches - SEA SMAGY

Période du : **01/01/2020** Au : **31/07/2020**

SCEA La Côte des Chaintres

Agriculteur	Commune	Ref parcelle	Date Début	Date Fin	Dose en MB	Qté épandue MS	Flux MS sur 10 ans (hors add.)
					t/ha	T MS	T MS/ha
PELLETIER Thierry	ST MARTIN D ABBAT (45)	PELT01-02	21/07/2020	21/07/2020	4,0	3,1	7,5521
PELLETIER Thierry	GERMIGNY DES PRES (45)	PELT01-06	21/07/2020	21/07/2020	4,3	8,5	6,1169

Valeur limite (1) 30,0000

(1) Cas général

ANNEXE 6

FLUX CUMULES EN ELEMENTS TRACES METALLIQUES ET ORGANIQUES DES BOUES

Suivi pluriannuel - Flux en ETM

ldin

DOSSIER : SEA SMAGY

Produit : Boues sèches - SEA SMAGY

Période du : **01/01/2020** Au : **31/07/2020**

SCEA La Côte des Chaintres

						Flux ETM								Flux ETM sur 10 ans							
Agriculteur	Commune	Ref parcelle	Date Début	Date Fin	Dose en MB	Cd	Cr	Cu	Hg	Ni	Pb	Zn	Cr+Cu+Ni +Zn	Cd	Cr	Cu	Hg	Ni	Pb	Zn	Cr+Cu+Ni +Zn
					t/ha	g/m²	g/m²	g/m²	g/m²	g/m²	g/m²	g/m²	g/m²	g/m²	g/m²	g/m²	g/m²	g/m²	g/m²	g/m²	g/m²
PELLETIER Thierry	ST MARTIN D ABBAT (45)	PELT01-02	21/07/2020	21/07/2020	4,0	0,0002	0,0071	0,0416	0,0001	0,0078	0,0067	0,2099	0,2664	0,0006	0,0215	0,1053	0,0004	0,0187	0,0164	0,4825	0,6280
	GERMIGNY DES PRES (45)	PELT01-06	21/07/2020	21/07/2020	4,3	0,0002	0,0076	0,0444	0,0001	0,0083	0,0072	0,2240	0,2843	0,0005	0,0165	0,0808	0,0004	0,0145	0,0133	0,3849	0,4967
Valeur limite (1)	-	-			-								-	0,0150	1,5000	1,5000	0,0150	0,3000	1,5000	4,5000	6,0000

Dose moyenne d'épandage (en MB) : 4,2 t/ha

Dose moyenne d'épandage (en MS) : 3,2 t MS/ha

(1) Cas général

Suivi pluriannuel - Flux en CTO

DOSSIER : SEA SMAGY

Produit : Boues sèches - SEA SMAGY

Période du : **01/01/2020** Au : **31/07/2020**

SCEA La Côte des Chaintres

							Flux	СТО			Flux CTO s	sur 10 ans	
Agriculteur	Commune	Ref parcelle	Date Début	Date Fin	Dose en MB	Total7PCB	Fluor	BBF	BAP	Total7PCB	Fluor	BBF	ВАР
					t/ha	mg/m²	mg/m²	mg/m²	mg/m²	mg/m²	mg/m²	mg/m²	mg/m²
PELLETIER Thierry	ST MARTIN D ABBAT (45)	PELT01-02	21/07/2020	21/07/2020	4,0	< 0,0172	0,0275	< 0,0156	< 0,0127	< 0,0462	0,0606	< 0,0268	< 0,0222
PELLETIER Thierry	GERMIGNY DES PRES (45)	PELT01-06	21/07/2020	21/07/2020	4,3	< 0,0183	0,0293	< 0,0167	< 0,0136	< 0,0382	0,0503	< 0,0195	< 0,0164
Valeur limite (1)		•			•					1,2000	7,5000	4,0000	3,0000

Dose moyenne d'épandage (en MB) : 4,2 t/ha

Dose moyenne d'épandage (en MS) : 3,2 t MS/ha

(1) Cas général

ANNEXE 7

CARTOGRAPHIE DES PARCELLES EPANDUES EN 2020

Station d'épuration de SEA SMAGY Epandage réalisé

A

Echelle: 1/10 000ème la Bât С es Chaintres la Croix Bain le Grand Pont les Cheminées 1,10 5 Rondes St. épur. 109 108 les Phoreaux -3 Oratoire 109 a la Sonnerie 0,6 la Maison Brûlée Bussy -des-Pres Marteau la Noue 109 108 les Casseaux PELT01-06 la Grapinière 109 la Grosse Pierre 109 109 les Boi rélè∨ements de sols ∤r la Simiare Parcelles épandues le Ruets Plan d'épandage 109 Zones épandables Zones exclues 110 109